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This paper presenls a moving mesh, two-dimensiona! finite vol-
ume method suitable for tracking interfaces across which there
is mass transfer. We consider liquid and vapor phases of single
component fluids separated by a phase interface in an evolving
flow field. Metastable bulk states are allowed (as are superheated
vapor and subcooled liguid bulk states) while the interface is as-
sumed to exist in thermal and chemical equilibrivm. Mass transfer
occurs at the interface, driven by the local flow conditions, The
interface is tracked by nodes representing the liquid and vapor sides
at the same spatial location. The interface motion is found from
the sotution of the coupled interfacial conditions and bulk fluid
equations. The bulk fluids are considered as viscous, conducting,
and compressible fluids necessitating the use of the continuity,
momentum and energy equations in the bulk regions. The control
valume continuity, momentum and energy equations are modified
in the presence of a phase interface to include surface properties
using a simple interface model with surface tension and surface
energy. Simple simufations are presented illustrating the
method. © 1995 Academic Press, Inc.

1. INTRODUCTION

Two phase flows play an important role in technological
processes. An important subclass of two phase flows are flows
in which liquid—vapor phase transitions are significant. Heat
cxchanger equipment and piping in power plants and oif refin-
erics are examples of devices in which phase transitions play
an important role. Computational methods for these technologi-
cally imporiant processes have traditionally been dominated by
the use of averaged equations and their attendant correlations
and flow maps. Moe and Bendiksen [ 19) provide a recent exam-
ple detaiting the use of two-fluid models {(a common set of
averaged equations). While necessary for the computation of
many praclical flows, averaged equations do not attempt to
resolve the fine scales associated with heat and mass transfer
at phase interfaces, Nucleate boiling is an example of a techno-
logically important process in which the small scales associated
with the bubble growth and departure are important, There
has been extensive experimental work on nucleate boiling but
computational methods to accurately address this problem have
to date been based on many simplifying approximations. Lee
and Nydahl [20] used an assumed bubble shape to simulate the
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growth and departure of vapor bubbles. Thetr method neglected
any gradients in the vapor phase and required an empirical
relationship o complete the geometry. Results of their work
have been used in the experimental work of Zeng, Klausner
and Mei [21] to aid in the development of a bubble departure
model. A similar numerical approach was taken by Patil and
Prusa {22] who assumed a bemispherical shape in simulating
vapor bubble growth on a heated wall. In order to simulate
this type of problem without assuming the bubble shape, it is
necessary to include interface tracking capability.

The method presented in this paper is intended for the direct
simulation of boiling and condensation phenomenon in two
phase flows including the tracking of the phase interface. These
flows are characterized by the discontinuity of the normal com-
ponent of the fluid velocity across a phase interface. In addition,
the interface motion is tightly coupled to the surrounding ther-
mal and mechanical fields and gradients which may be discon-
tinyous across the phase interface. Direct simulation including,
the mass, momentum, and encrgy transfer across phase inter-
faces then requires that we resolve these discontinuous ficlds
and gradients as part of the solution algorithm.

We use a semi-implicit finite volume method on a moving
mesh, The fluids are viscous, conducting, and compressible
with equations of state utilizing pressure and temperature as
the independent variables. The state equations are extended
smoothly into the saturation region allowing for the existence
of metastable states (superheated LHquid or subcooled vapor).
The interface is tracked with nodes affixed on the liquid and
vapor sides at the same spatial location. The interface is embed-
ded within moving control volumes defined on a triangular
mesh. The interface motion is found from the physics while
the mesh motion in the bulk (single phase) regions is calculated
by stmple interpolation between the boundaries and the phase
interface. While the method presented is two-dimensional, it
is extendible to three dimensions provided the analyst is willing
o code the extensive geometrical calculations necessary for
whatever control volume or grid structure is to be used.

In this paper, we consider flows in which the interface does
not distort greatly or change topological features. Extension of
our method 10 flows with large interfacial distortion or change

142



LOCAL SIMULATION OF TWO-PHASE FLOWS

FIG. 1. Region containing two bulk phases separated by a phase interface.

in topology (for example, due to bubbles coalescing) is possible
using dynamically restructuring grids such as those found in
Fyfe. Oran, and Fritts [13]. We emphasize that such an exten-
sion could not compete with Eulerian methods for flows without
mass transfer and large interfacial distortion and/or changing
interfacial topology. Cur method does, however, provide the
capability for the direct simulation of local two-phase flows
with mass transfer across phase interfaces and the attendant
discontinuous fields and gradients. The reader interested in
methods suitable for other types of flows will find an excellent
review in the paper by Unverdi and Tryggvason [1].

The outline for the remainder of this paper is as follows. We
state the governing equations in Section (II), present the spatial
discretization of our numerical method in Section (II) and the
temporal discretization of our numerical method in Section
(IV). Issues related to the mesh motion are discussed in Section
(V). We present sample simulations in Section {VI) and close
with conclusions in Section (VID).

II. THE BASIC EQUATIONS

We counsider a two-phase, non-material, moving region com-
prised of two bulk regions separated by a phase interface as
shown in Fig. 1 (by non-material we mean that the volume and
the mass it contains experience different motions). This region
occupies the time varying volume (s} = Q,(5) U (1) and is
enclosed by the surface (1) = 2,(r) U 2,(¢). Bulk phase 1
occupies volume £},(r) and bulk phase 2 occupies volume (),(f).
The bulk regions Q,(f) and {3,(s) are in contact with the
surroundings through the surfaces Zl(t) and 2.,(¢) and are sepa-
rated by the surface, 2,(r), which is the phase interface. The
phase interface, 2,(¢), intersects 2(r) along the curved line C(1)
which divides 2Z(7) into surfaces 2,(r) and 2,(n. N, is the
outward directed unit normal along C(f) in the tangent plane
of Z,(r). In what follows we write a general set of basic equa-
tions for the region M), assuming that this region contains
two bulk phases along with a phase interface. The basic equa-
tions for regions containing a single bulk phase, and therefore
no phase interface, are a special case of these general equations.
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This special case is realized simply by interpreting £(z) as the
volume occupied by the bulk single-phase region and 2(1) as
the surface enclosing ). The interfacial model used in this
work requires only a knowledge of the temperature dependence
of the surface tension. The surface tension appears in both the
momenturn and energy equations and a surface energy term
appears in the energy equation. Delhaye [3] has shown that
failure to include surface properties other than surface tension
in the basic equations leads to a violation of the second law
for a vapor bubble of decreasing radius. The surface energy is
related to the surface tension by a surface constitutive relation-
ship derived from a second law analysis. Further background
on this interfacial model may be found in Ishii [8].

The field equations for an arbitrarily moving non-material
volume are now expressed in the form used for the finite volume
discretization. The continuity equation is expressed as [7]

d

= Qmpdv+j%p(v v)-nds =0, 0
where p is the bulk phase density, v the bulk phase velocity,
v, and n are the velocity and outward directed unit normal of
the surface (7), respectively. The momentum equation is ex-
pressed as

d
7 pvdV+ jz(n pv(v —v)-ndS

- - ZmP-ndS-!-sz Tv-nd5+jmpbdv )

+ f o YN AC,

where P is the pressure, T” the viscous stress tensor, b is a
body force, and y the surface tension. We note that this equation
is our control volume counterpart to the familiar Laplace equa-
tion for the pressure jump inside of a gas bubble. The total
energy equation is expressed as

d 1 1
E[ﬂmp(e—kav-v) dV+szp(e+§v-v) (v—v)-ndsS

d
ol — .
+ thau) u,ds + Jcm u,(v—v,)-N,dC

(3
B fm'yv-N,,dCf J'E(‘)Pv-ndS+ J’z(l)v'T“-ndS

+ fﬂmpv-dewfzmq-ndS,

where e is the bulk phase internal energy, q the heat flux vector
(assuming Fourier’s law), and u, is the surface energy. Note
that we have tacitly assumed no volumetric energy source. The
total energy equation is used instead of the thermal energy
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node i

interface surface (line in 2-I }

FIG. 2. Discretized two-dimenstonal region showing triangular mesh and
control volume (shaded area).

equation to ensure that the control volume equations will con-
verge consistently to the local interface equations (jumnp condi-
tions) in the limit as the control volume size vanishes. We
note that in the formulation used here, these control volume
equations take the place of the classical jump conditions at
the interface. We complete the set of basic equations for bulk
regions with the bulk state equations,

e=e(d, P)

4)
p=p(d,P),
where ¢ is the temperature.

Equations (1) through (4) comprise the set of basic equations
for butk regions. To this set of basic equations we append the
relationship between the mesh motion and the conirol vol-
ume area

d
EJM 4V — fzw v, nds=0. (5)

FIG. 3. Triangular element divided into three equal areas.
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Equations (1) through (5) comprise the complete set of equa-
tions necessary to solve for the flow fields in the bulk regions.

III. ADDITIONAL INTERFACE EQUATIONS

To complete the sei of equations for a region containing a
phase interface we need the state equations for the interface
quantities

¥y =y

6
u, = u . ©)

Note that the v and u, are not independent quantities as they
are related by the constitutive relationship

y=u+ 0% 9

We also use the interface constitutive equations

'19] = 19'2
gl B) = gl P, &) (8)
(V ) Na)] = (V ) Nu‘)Ze

where the subscripts | and 2 refer to the bulk phases, and g is
the Gibb’s potential for the bulk phases. We note that these
interface conditions neglect the irreversibilities associated with
heat and mass transfer at the interface. For discussion of these
effects and generalizations of Egs. (8) to the irreversible case

FIG. 4. Computational mesh for first three simulations (vapor nodes
slightly compressed to show the initial interface location): 196 vapor nedes;
20 interfacial nodes; 776 total nodes.
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vapor velocity
max = 0.1411E0

liquid velocity
max = §,1658E(}

fluid velocity relative to interface
max = 0.3292E0

interface velocity
mayx = 0.2660E0

FIG. 5, Fluid velocities at ncye = 1 for repressurization simulation,

see [8]. The first and second equations of Eqs. (8) are referred
to as the thermal equilibrium condition and the chemical equi-
librium condition, respectively.,

We prescribe the tangential component of the interfacial
velocity in such a way as to minimize mesh deformation. The
field equations, (1) through (3), may be used to generate the
local instantaneous form of the basic equations at the interface
(jump conditions) [6]. Inspection of these equations, along with
the interface constitutive equations, indicates that the tangential
motion of the interface is not determined by physics and may
be prescribed arbitrarily.

Mathematically, we consider phase change problems to be
moving boundary problems with one phase behaving as an inlet
at the interface while the other phase behaves as an outlet. For
a fixed boundary problem we would specify three quantities
on the inlet side and four on the outlet side [17]. The problem
would be closed by the use of a numerical boundary equation
on the exit side [18]. For our moving boundary problem we
need specify two additional quantities due to the interface mo-
tion. We now have four “‘jump’’ conditions (Egs. (1} through
(3)), three interfacial equations {(Eqs. (8)) and the specification
of the tangential interfacial motion. Our formulation then re-
quires the use of two numerical boundary conditions. We have
experienced the most success by forcing first or second deriva-
tives of pressure normal to the interface to zero in both
phases.

As far as we know, theoretical work on the thermodynamics
and fluid mechanics of phase interfaces has still not closed the
boundary value formulation of liquid—vapor phase transition
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problems (thus the need for one extra numerical boundary
condition). Dell’Iscla and Romano {4, 5] came close to a solu-
tion of this problem but still were compelled to postulate an
additional constitutive relationship to close their model. We
note that the interfacial model used in [4, 5] is much more
complicated than that used in our method. The basic physics
of interfacial mass transfer is a theoretical area in which there
is still work to be done.

IV, SPATIAL DISCRETIZATION OF THE
BASIC EQUATIONS

The grid structure used is a typical finite volume grid structure
in that the triangular elements are not themselves the control
volumes, but rather, contribute to a number of control volumes.
Both the scalars and the velocities are defined on the nodes
{collocated) as opposed to a staggered arrangement. The advan-
tages of this arrangement are simplicity in forming the control
volume equations and the conventence of having the variables
defined on the interface. The disadvantage of a collocated grid
is the difficulty in conwolling 2A x wavelength modes, The
scheme used in this work is analyzed in [2] on a uniform
rectangular grid and shown to be stable with a neutrally stable
acoustic 2A x mode at stagnation points.

Shown in Fig. 2 is a typical grid structure of a few triangular
elements with the related control volume of node / shown as
the shaded area A;. Also shown is one segment of the control

bubhle shape { original - inner circle )

pressure profiles temperature profiles

max = 6.4919E6 max = 578.55
min = 6.4906E6 min = 555.05
FIG. 6. Bubble shape, pressure, and temperature profiles at ncye = 1 for

repressurization simulation,
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surface denoted by 2. The control surface segment 2 is
defined as a straight line segment from the area centroid of the
triangle to the mid-point of the side of the triangle. The control
volume in Fig. 2 also contains an embedded phase interface
and the tangent plane vector, N,,.

Spatial integrations appearing in the time derivative terms
are calculated by lumping the variable at the node as are body
force terms in the momentum and energy equations. The surface
terms in the equations are built by moving through the grid
triangular element by triangutlar element. This step, typical of
the finite volume method, avoids duplication of the surface term
calculations for control volumes sharing common boundaries.
Consider the triangular element shown in Fig. 3. Here, N|, N,
and N, are local node numbers on the element while n,, n,
and n, are normal vectors to the straight line segments opposite
of Ny, N;, and N;. These straight line segments are the coiitrol
surfaces X, , 2., and 2, referred to as =, in Fig. 2. The normal
vectors have magnitude equal to the length of the straight line
segments on which they are defined, Points ¢ and u are the
area centroid of the triangle and the upstream coordinate on
the triangle calculated as

X, =X, —0tv, : (9

where v, is the velocity of the fluid at the centroid and 7 is a
coefficient whose significance will be discussed later. Unless
otherwise stated, the spatial discretizations that follow assume
linear profiles on the triangular elements and, if necessary, use
area coordinates [12] to form the linear shape functions. In
particular, v, in Eq. (9) is simply the average of the nodal veloc-
ities.

The convective flux terms are evaluated by using the assumed
linear profiles on the element for v, v,, and ¥. Along each
straight line segment 2, we approximate

3
J’Ek‘lf(v—vs)-ndSE‘I’u;ai(v—v,)NJ,-nk, (10)

where W, is the valoe of ¥ at the upstream coordinate of the
element. We evaluate W at the upstream coordinate to avoid
the convective instability typical of a forward time centered
space treatment of the convective terms. If we expand the flux
terms (written in continuous divergence form) in a Taylor series
about the centroidal coordinates, we find

V- () =V (Fv) — V- (A-VP), (11
where A = (5/2) 8tv.v. and ¥ _is the value of ¥ at the centroid.
Inspection of Eq. (11) indicates that our treatment of the flux
terms is closely related to the tensor viscosity, method [9]. We
therefore refer to # as the tensor viscosity coefficient. The
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vapor velocity liquid velocity

max = (.9988E4 max = 0.833E-4
interface velocity fluid velocity relative to interfuce
max = 0.1304E-3 max = 0,1913E-3

FIG. 7. Fluid velocities at ncye = 1000 for repressurization simulation.

simulations presented in this paper all use a tensor viscosity
coefficient of unity.

The coefficient o} in Eq. (10) is calculated using the trapezoi-
dal rule on the velocities along the straight line segment 2 of
the control surface with outward directed unit normal n,. The
flux terms are then accumulated in the required control volume
equations. As will be discussed later, the use of the trapezoidal
rule is crucial to satisfying the relationship between the mesh
motion and the time rate of change of the control volume area,
Eq. (5).

The pressure line integral from momentum is approximated
along the straight line segment, 2, as

3
fE&PndSEEBQP,nk, (12)

where f3; is the coefficient of P; evaluated using the trapezoidal
rule and the assumed linear profile for P. The assumed linear
profiles result in constant diffusion and dissipation terms on
the triangular elements (but not on the control volume) simpli-
fying a similar surface line integral evaluation. The pressure
work term is approximated by expanding the derivative and
lumping the coefficient of the resulting gradient and divergence
operators. The resuiting approximate form is

f o VPR V=P, f 5, vonds + vf-fzm Pnds, (14)

where P; and v, refer to the pressure and velocity at the node
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hubble shape { original - inner circle )

pressure profiles
max =7.6779E6
min = 7.677T7TE6

temperature profiles
max = 568.95
min = 565.41

FIG. 8. Bubble shape, pressure, and temperature profiles at ncyc = 1000
for repressurization simulation.

corresponding to the control volume /. The line integrals are
then approximated on the element and accumulated in a similar
manner as the previous approximations,

The surface tension term in the momentum equation

o ¥ NordC

(15)
is simple (o treat spatially as in two dimensions the term repre-
sents a point force acting on the sides of the contre! volume.
The direction of this point force is the direction of N, shown
in Fig. 2. Consistent with the linear profile in temperature
the surface tension is evaluated at the temperature where the
interface pierces the control surface. The necessary geometrical
calculation for Eq. (15) is the calculation of the unit tangent
vector on the interface, N,,. A similar treatment is used for the
surface tension work term from the energy equation.

The last term we need to consider spatially is the time deriva-
tive of the interfacial surface energy. We use a state equation
for y linear in temperature and Eq. (7) to approximate u, as
constant. The surface transport theorem [6] then leads to

d
Glsgmds= [y omekids+ [ wv-Ndc o

where ¢, is the component of v, normal to the interface and K,,
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is the mean curvature, The second integral on the right-hand
side of Eq. (16) is calculated in a manner similar to Eq. (15).
The first integral on the right-hand side of Eq. (16) necessitates
the calculation of the mean curvature. The interface nodes
provide us a convenient coordinate system with which to manip-
ulate the formulae of Weingarten [15] to obtain a (2D} formula
for the mean curvature

on, on,
2K, = — n N, + —?-I;-Nm.)/N,,'Nu, (an
a5 as l

where »n, and n, are the cartesian components of the unit normal
to the surface, N, and N, are the cartesian compenents of the
tangent vector, N, and s 1s the coordinate measured along the
interface. The derivatives in Eq. (17) are calculated as centered
finite difference formulas using the computational mesh along
the interface. This formula is convenient as we have the various
normal and tangent vectors stored for other purposes. We now
have all of the geometric and kinematic terms necessary to
evaluate Eq. (16).

IV. TEMPORAL DISCRETIZATION OF THE
BASIC EQUATIONS

Our basic philosophy in the time discretizations that follow
is to avoid having to iterate a nonlinear system to advance the
solution in time. We therefore linearize our temporal discretiz-
ations at the new time level. In order to avoid a Courant limit
based on the sound speed we evaluate the pressure in the
momentum equations and the velocities in the continuity equa-
tion implicitly. We note that these are the spatial terms responsi-
ble for acoustic waves. Consistency with the flux terms in the
continuity equation requires that we evaluate the velocities in
the flux terms of the momenium and energy equations implic-
itly. As we will be simulating flows in regions where diffusion
effects are important we will find it necessary to use computa-
tional grids with high mesh resolution in these regions. We
therefore treat the diffusion terms implicitly to avoid time step
restrictions based on explicit differencing of these terms for
higher resolution meshes.

The lumped time derivatives are linearized in time and ap-
proximated with forward difference operators, The spatially
discretized flux terms, Eq. (10), are linearized in time as

(18)

3
Wi g (v — vy,
i=1

where n + # refers to the average of the # + | time level and
the n time level. The time level on the unit normal will be
discussed in a later section. The above terms are linear in the
n + 1 time level unknowns away from the interface as the
mesh motion is known. Flux terms dependent on the unknown
mesh motion at the interface are linearized by placing the time
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FIG. 9. Velocity field near bubble in thermocapillary simulation at
ncye = 5000. Bottorm: mass transfer case, bubble migration velocity =
3.04 mr/s, max fluid velocity = 6.14 mm/s; top: irmiscible case—(original
bubble position shown at bottorn), bubble migration velocity = 0.00 mm/s,
max fluid velocity = 0.184 mumvs.

level on the normal vector to time level n. We will use this
time linearization for any terrns where the new time geometry
is unknown-due to the control volume either surrounding or
being adjacent to the interface.

The viscous dissipation term and body force terms are evalu-
ated explicitly while the pressure work term, Eq. (14), is linear-
ized in time by treating the lumped coefficients explicitly. The
surface tension terms in momentum and energy are calculated
as implicit terms in temperature. The algebraic interface condi-
tions, Eqgs. (8), along with the pressure extrapolations and tan-
gential interfacial motion specification, are treated implicitly
and linearized as necessary.

V. MESH MOTION ALGORITHM

The interfacial nodes remain affixed to the interface and their
velocity normal to the interface is determined by physics and
is found as part of the solution at each time step. The require-
ment that we move the mesh in the bulk regions comes not
from the physics of the problem, but rather, from the desire to
limit the amount of distortion in the mesh near the interface
due to the interface motion. We seek then an approach that
minimizes any additional computational complexity yet satis-
fies the kinematic Eq. (5). Our approach is to specify the mesh
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velocity in the bulk regions at time level 1 + 1 in terms of the
interfacial mesh velocity at time level n. This allows us to
calculate the mesh motion in the bulk regions explicitly while
satisfying the kinematic equations. A reasonable scheme is to
interpolate the mesh motion in the bulk phases between the
boundary nodes (at which the mesh motion is specified) and
the interface nodes.

Satisfaction of the kinematic equations is accomplished in the
following manner. Consider the area swept cut by the motion of
one of the straight line segments, 2, during the time interval
dt. This area can be shown to be identically [10]

3A = @ vn+'| (nn+‘1 + n"),

7 Veae (19)

where vJ,, is the average new time mesh velocity along the

segment 2, calculated using the linear shape functions on the
triangular element. Inspection of Eq. (19) indicates that the
kinematic equation, Eq. (5}, is satisfied identically in two di-
mensions if the trapezoidal rule is used for the velocities and
the unit normal is the average of the new time and the old time
values. This discretization is used for the time derivative of the
area and the flux terms in the continuity, momentum, and energy
control volume equations. This ensures that the mesh motion
15 providing no spurious sources to the conservation equations.
This is similar to the method used in Demirdzic and Peric [ 10,

FIG. 10. Temperature contours near bubble in thermocapillary simufation
at ncye = 5000, Center contour value = 568.22 K. Contour increment = 0.2 K.
Bottom—mass transfer case; top—immiscible case.
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e
RELULEEYT A
SRR MEY

FIG. 11. Velocity field near oscillating bubble (original bubble shape
shown with major axis oriented with the horizontal). Top: time = /2, max
velocity = 4.8 ¢ni/s; bottom: time = 7, max velocity = 4.3 cm/s.

111, who refer to Eq. (5) as the space conservation law. We
note that the time truncation error in using the old time unit
normal is within the time truncation error of the basic scheme
(which is first order in time). That this is important will be
seen in the following discussion.

The method described above works well for the region of
the mesh where there are only bulk phases. If the control volume
in question is cut by an interface then the mesh motion algorithm
must be modified. We first note that as the interfacial velocity
is unknown at time level n + I, the geometry is also unknown.
We linearize the discrete equations at the interface by using
geometric quantities at time level n.

The lateer linearization may also be used in the bulk phases
in simulations where it is not clear a priori the best interpolation
scheme for the bulk mesh motion. Our approach in the bulk
phases is lo code formulas stating that the » + 1 mesh velocities
are simply the average of their n + 1 time level neighbors.
We call this method the implicit mesh motion method. The
disadvantage of the implicit mesh motion method is an increase
in storage required for two new equations at each node.

For control volumes containing an interface, Eq. (5) must
be applied to regions 1 and 2 separately as the time derivative
of these areas is calculated separately. This necessitates the
addition of the term

(W~ %[5 vonds 20)
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to the control volume equations, Eq. (1) through Eq. (3). The
time level of ¥,, ¥,, and n in this equation is n while the time
level of v,is 1 + 1.

We note that the unknown normal component of the interface
velocity appears in the flux terms of the control volume equa-
tions at and near the interface. The new mesh positions are
determined by a simple explicit Euler step once the mesh (and
interface) velocities are known.

VL. SAMPLE SIMULATIONS

We first consider three simulations using the grid shown in
Fig. 4. The vapor bubble is 0.02 ¢m in diameter and the square
boundary has sides of length 0.15 cm. There are 196 vapor
nodes and 776 total nodes. The length between nodes on the
interface is 3.13 X 107° ¢m. The mesh motion in the bulk
phases is determined by interpolating linearly in the radial
direction between the interface and the boundaries or bubble
center. These simulations use a banded matrix direct solver.

We finish with a simulation of a vapor bubble, attached
to an adiabatic wall, growing due to mass transfer from the
surrounding superheated liquid. We run this simulation on three
grids of increasing resclution and compare results.

All simulations use linearized state equations (Eq. (4) and
Eq. (6)) formed using properties of liquid and vapor at the
reference saturation temperature and pressure of 568.22 K and
8.0 Mpa, respectively. These linearized state equations are ob-
tained simply by estimating the required slopes from the tabular
data for water. The same procedure is followed in constructing
the surface state equations (Eqg. (6)). The tangential interface
motion in all simulations is prescribed in such a way as to keep
the nodes along the interface as equidistant as possible. The
second derivative of pressure is set to zero in the normal direc-
tion of the interface by using a simple linear extrapolation along
the radial lines emanating from the interface.

Repressurization of a Chamber Due to Vaporization of a
Superheated Liguid

We consider first the repressurization of a closed adiabatic
chamber of superheated (metastable} liquid in thermal equilib-
riom with a superheated vapor bubble. The bubble is initially
separated from the liguid by a rigid impermeable membrane;
hence, the liquid and vapor are not in chemical or mechanical

Superheated Liquid
Saturated Vapor Bubble

Adiabatic wal)

F1G. 12, Initial configuration for simulation of bubble growth on wall.
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FIG. 13. Medium resolution computational mesh for final simulation {va-
por nodes not shown): 264 vapor nodes; 13 interfacial nodes; 652 total nodes,

equilibrium. The liquid and vapor bubble are initially at the
superheated state 6.0 MPa, 56822 K. The membrane is re-
moved and the liquid and vapor make mechanical and chemical
contact. We use a time step size of 2.0 X 107° s to simulate
the transients in this problem as the chamber and vapor bubble
are driven to near steady state. The results of this simulation
are shown for the first time cycle in Fig. 5 and Fig. 6 and for
the thousandth time cycle in Fig. 7 and Fig. 8.

This simulation is driven by the initial inequality of the
Gibb’s potential at the interface. After the first time step, shown
in Figs. 5 and 6, the interface reaches the saturation state shown
in the pressure and temperature profiles of Fig. 6 (we note that
this saturation state is defined by our linearized state equations
and therefore will differ slightly from available tabulated data).
The scalar profiles shown in Figs. 6 and 8 have the vapor
profiles displaced to the right for clarity with increasing magni-
tude upwards. Due the vaporization of the liquid, the fluids in
the bulk regions are being compressed. The high temperature
in the vapor region of Fig. 6 is approximately the adiabatic
compression temperature at the shown pressure level. The ve-
locity plots in Fig. 5 indicate that although the liquid is moving
radially outward from the bubble, there is still vaporization as
the interface is overtaking the liguid.

Inspection of Fig. 6 indicates the existence of a newly formed
thermal layer in both the liquid and vapor sides. An interesting
phenomenon can be observed in Figs. 6 and 8 concerning this
thermal layer. If one considers that, at this temperature, the
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conductivity of liquid is roughly five times the conductivity of
vapor one would expect that the therma!l layer on the liquid
side would diffuse away faster than the thermal layer on the
vapor side. That this is not the case here can be seen from
the following simple reasoning. Neglecting surface properties,
viscous work done at the interface, and kinetic energy, we may
collapse the conirol volume continwity (Eq. (1)) and total energy
(Eq. (3)) equations to the classical jump conditions

by, + |lg-nj| =0 (21)

m=p(v-v)n=p,(v—v)-n (22)
where /1, is the latent heat of vaporization and |lq-nl| is the
jump in heat conducted into the interface. Note that the second
of these equations reveals explicitly why there is a discontinuity
in the normal component of velocity. Inspection of these jump
conditions indicates that for the case of a metastable liquid in
proximity to an interface, the thermal layer on the liquid side
is sucked into the interface while the thermat layer on the
superheated vapor side is blown away. This blowing and suck-
ing is visible on the velocity plots (relative to the interface) of
Figs. 5 and 7. The temperature profiles in the liquid and vapor
regions of Fig. 8 are indicative of this blowing/sucking phe-
nomenon.

FIG. 14. Liquid velecity field and temperature conteurs at ncyc = 5000 for
final simulation. Inner {sotherm is 339.5 K which is the saturation temperature at
the bulk liquid pressure. Inner isotherm is the bubble surface. Top left, velocity
field for medium grid resolution; top right, temperature contours for medium
grid resolution; bottom left, veloeity field for fine grid resolution; bottom right,
temperature contours for fine grid resolution (temperature contours have 0.5
K increments).
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FI1G. 15,  Average curvatures of bubble surface for three grid resolutions: coarse resolution grid; .... medium resolntion grid; — — — - fine resolution
grid.

The analytic steady state solution satisfies the conditions of
thermal equilibrium, mechanical equilibrium, chemical equilib-
rium, constant area, constant mass, and constant energy. The
numeric values for this analytic steady state solution are found
using the same lincarized equations of state we use in
the code. This final state is P, = 809695 X 10° Pa, P, =
8.09679 X 10° Pa, ¥, = 4% = 569.066 K, and the final bubble
radius is o = 1.1441 X 107 m.

We allow the simulation to execute for 50000 cycles and
arrive at the near steady state results P, = 8.08438 X 10° P,
P, = 8.08424 X 10° Pa, Pieraee = Thin = 36896 K, &, =
569.03K, a = L1.16 X 107*m which are in reasonable
agreement with the analytc values,

Effect on Thermocapillary Migration of Mass Transfer

We next consider a vapor bubble subjected to a temperature
gradient in the surrounding liquid. We compare the resulting
flows for an immiscible interface and an inierface with mass
transfer. The phenomenon of thermocapillary migration occurs
when the surface tension is a temperature dependent quantity.
For a bubble immersed in a liquid supporting a temperature
gradient, thermocapillary migration manifests itself as a motion
of the bubble in the direction of increasing temperature [16].

FIG. 16. Comparison of bubble size and shape at acyc = 5000: Fine
resolution grid—top shape; Medium resolution grid—middle shape; Coarse
resolution grid—bottom shape.

We again use the grid shown in Fig. 4 with the top and bottom
walls kept at 5° above and below the reference temperature,
respectively. For initial conditions, we have quiescent fluids at
a uniform pressure equal to the reference pressure with a linear
temperature profile in both fluids between the top and bottom
walls. The side walls are adiabatic and the region is closed.
These initial conditions are somewhat artificial and we confine
our interest to time cycles far removed from the initial transients
in which the temperature profile becomes more realistic (nearly
uniform in the bubble with the surrounding liquid temperaiure
adjusting itself to the bubble temperature), We use a time step
size of 2.0 X 1079 s in this simulation and Fig. 9 shows the
bubble position and velocity profile for the mass transfer case
and the immiscible case. The immiscible case is obtained simply
by replacing the second of Egs. (8) with an equation forcing
the pormal component of one bulk phase velocity and the

FiG. 17. Bubbic shape for final simuiation with medium resolution grid
time step = 5.0 ¥ 107%s. Bubble shapes shown for ncyc = 0, 500, 1000,
5000, 10000, 15000, 20000, and 25000.
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TABLE 1
Interfacial Velocity at Bubble Mid-Point (mm/s)

cyc
Grid 2000 3000 4000 5000
Coarse 2.13 1.93 1.77 1.67
Medium 2.43 2.07 1.87 1.73
Fine 2.49 2,14 1.92 [.77

normal component of the interface velocity to be equal. The
contro! volume continuity equation at the interface will then
force the normal component of velocity of the other bulk phase
to have approximately the same value. The interface is then
material (immiscible).

Viewing Figs. 9 and 10 we make the following observations.
The immiscible case, as expected, shows the bubble migrating
towards the higher temperature. The bubble with mass transfer
has not moved as the effect of the temperature gradient is
vaporization of the liquid at the top of the bubble and condensa-
tion of the vapor at the bottom of the bubble at the same rate.
The resulting temperature field in the bubble is uniform; hence,
there is no surface tension gradient driving the thermocapillary
migration. As is evident in Fig. 10, the immiscible case still
supports a slight temperature profile in the bubbie and, hence,
a surface tension gradient which drives the thermocapillary mi-
gration.

Oscillating Bubble

Next, we consider the oscillations of an elliptically shaped
vapor bubble in liquid. Fyfe, Oran, and Fritts [13] obtained an
analytic solution for the potential flow case which has become
a useful benchmark for testing codes that calculate surface
tension effects. We note that this linearized analytic solution
is based on small perturbations about the circular shape. For
the simulation shown here, the perturbation of shape is finite
{10% of the bubble radius). and the full set of hasic equations
is solved (no approximation based on potential flow is used).

The liquid pressure is set to our reference pressure, the vapor
pressure is increased by the surface tension term appearing in
the momentum jump (control volume equation) projected in

TABLE 11

Maximum Liquid Velocity (mm/s)

cyc

Grid 2000 3000 4000 5000
Coarse 3.59 5.25 8.03 11.9
Medium 345 3.74 4.68 6.07
Fine 341 2.99 2,87 3.09
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the normal direction. The initial temperature is found by satis-
fying the equality of the Gibb's potential for the liquid and
vapor phases. If there were no perturbation of bubble shape,
this set of initial conditions would define an equilibrium con-
figuration. The bubble shape is perturbed to an ellipse with
major axis along the horizontal and minor axis along the verti-
cal. The analytic solution mentioned previously predicts a fre-
quency of oscillation

, _yint—n)
(p: + pa’ @
which for our parameters indicates a period of oscillation for
the lowest mode, n = 2, of 7 = 5.639 X 107*s. We simulate
this with a time step size one-hundredth of the period with Fig.
11 showing simulation results at the fiftieth and hundredth time
steps (time steps corresponding to the first half and full periods).
In Fig. 11 we observe that, for this simulation, the analytic
solution accurately predicts the period of oscillation (the differ-
ence in shape between bubble at the initial condition and at
the first period, time = 7, is barely discernible). We also observe
that mass transfer in this simulation is insignificant as there is
no mechanism by which & significant thermal layer is set up.

Bubble Growth at a Wall

Last, we consider the growth of a vapor bubble attached to
a rigid adiabatic wall. Figure 12 shows the initial geometry;
the bubble has a curvature of .30 mm and the iength of the
base of the bubble (that part of the bubble attached to the wall)
has length 0.20 mm. The vapor is surrounded by superheated
(metastable) liquid at 568.22 K, 7.0 MPa liquid. The upper
boundary is open to an ambient pressure of 7.0 MPa and the
liquid state is initially 568.22 K, 7.0 MPa. The vapor is initial-
ized to the saturation temperature corresponding to 7.0 MPa
plus the increase in pressure due to the surface tension. The
right side wall is adiabatic and we place a symmetry boundary
through the middle of the bubble. Unlike the simulation of
bubble growth given earlier, the liquid pressure will not increase
as there is an open boundary. The phase interface will then
remain near the saturation temperature corresponding to the
ambient pressure resulting in a sustained thermal layer. Heat
will continually be supplied to the interface, resulting in sus-
tained bubble growth.

This simulation is repeated on three grids of increasing reso-
lution, The coarse resolution grid has seven nodes along the
interface with 158 total nodes. The medium resolution grid has
13 nodes along the interface with 652 total nodes and the fine
resolution grid has 25 nodes along the interface with 2648 total
nodes. Shown in Fig. 13 is the grid with medium resolution
(vapor nodes removed for clarity). The element length along
the interface for this grid is initially 8.5 X 107 mm. The coarse
and fine resolution grids have double and half this length,
respectively. We use a time step of 2.0 X 107%s and simulate
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FIG. 18. Average curvature of bubble surface for final simulation with medium reselution grid,

the bubble growth for 5000 cycles. We use the implicit mesh
motion algorithm and solve the linear system using an ILU
preconditioned transpose-free quasi minimum residual method
[23] available in SPARSKIT [24].

Figure 14 shows the liquid velocity fields and temperature
contours at the 5000 th cycle for the medium and fine resolution
grids. Figure 15 compares the average curvature for the first
5000 cycles of the three cases. The oscillations in curvature
apparent in Fig. 15 are similar in nature to those shown in the
previous simulation. Figure 16 shows the bubble shape at the
5000 th cycle for the three cases. Table I compares the interfa-
cial velocity of the node originally at the center of the interface
for the three grid resolutions. Table IT compares the maximum
liquid velocity for the three grid resolutions,

Viewing Fig. 14, we note that the temperature field, which
drives the mass transfer, is nearly identical for the medium and
high resolution cases, We nole also that the flow field has
similar features. Viewing the numerical data given we see that
the convergence of the velocity fields is reasonable during the
early stages of the simulation when the bubble sizes and shapes
are similar but begins to suffer as the bubble sizes and shapes
began to differ. We note that the concept of pointwise conver-
gence does not quite apply here as any fixed point will see
a different moving boundary (interface) in the different grid
resolution simulations. It is clear that we have not reached grid
independent results in this set of simulations.

We close this section by repeating the simulation on the
medium resolution grid with a time step of 5.0 X 107%s for
25000 cycles. Figure 17 shows the evolution of the bubble size
and shape while Fig. 18 shows the average curvature. While
the resuits of the previous simulation indicate that this is not
a grid independent result, this simulation does indicate the basic

capability to track the interface in nucleate boiling type
problems.

VII. CONCLUSIONS

We have presented a method aimed at solving a very
specific class of problems. The simulations presented show
a basic capability to track interfaces across which there is
mass transfer. These simulations also show a basic capability
to simulate physics associated with surface tension driven phe-
nomena.

Future efforts will begin with the search for a preconditioner
for the iterative method that is optimized for this code. This
will allow the use of higher resolution grids when seeking
numerically accurate (grid independent) results. Later, the
capability to add and remove nodes dynamically would
enhance our ability to simulate physics resulting in greater
mesh distortions. The long term goal is to use this method
to run some ‘‘numerical experiments’’ in axisymmetric nucle-
ate boiling.
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